<th id="bnst4"></th>
    1. <thead id="bnst4"></thead>

      <ul id="bnst4"></ul>

          <div id="bnst4"><label id="bnst4"></label></div>

            大數(shù)據(jù)服務(wù)

            來源:|瀏覽次:201|2017年11月17日

            大數(shù)據(jù)概念

                "大數(shù)據(jù)"是一個(gè)體量特別大,數(shù)據(jù)類別特別大的數(shù)據(jù)集,并且這樣的數(shù)據(jù)集無法用傳統(tǒng)數(shù)據(jù)庫工具對(duì)其內(nèi)容進(jìn)行抓取、管理和處理。 "大數(shù)據(jù)"首先是指數(shù)據(jù)體量(volumes)?大,指代大型數(shù)據(jù)集,一般在10TB?規(guī)模左右,但在實(shí)際應(yīng)用中,很多企業(yè)用戶把多個(gè)數(shù)據(jù)集放在一起,已經(jīng)形成了PB級(jí)的數(shù)據(jù)量;其次是指數(shù)據(jù)類別(variety)大,數(shù)據(jù)來自多種數(shù)據(jù)源,數(shù)據(jù)種類和格式日漸豐富,已沖破了以前所限定的結(jié)構(gòu)化數(shù)據(jù)范疇,囊括了半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。接著是數(shù)據(jù)處理速度(Velocity)快,在數(shù)據(jù)量非常龐大的情況下,也能夠做到數(shù)據(jù)的實(shí)時(shí)處理。最后一個(gè)特點(diǎn)是指數(shù)據(jù)真實(shí)性(Veracity)高,隨著社交數(shù)據(jù)、企業(yè)內(nèi)容、交易與應(yīng)用數(shù)據(jù)等新數(shù)據(jù)源的興趣,傳統(tǒng)數(shù)據(jù)源的局限被打破,企業(yè)愈發(fā)需要有效的信息之力以確保其真實(shí)性及安全性。

            大數(shù)據(jù)作用
            大數(shù)據(jù)處理之一:采集
                大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫來接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過這些數(shù)據(jù)庫來進(jìn)行簡單的查詢和處理工作。比如,電商會(huì)使用傳統(tǒng)的關(guān)系型數(shù)據(jù)庫MySQL和Oracle等來存儲(chǔ)每一筆事務(wù)數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫也常用于數(shù)據(jù)的采集。
                   在大數(shù)據(jù)的采集過程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會(huì)有成千上萬的用戶來進(jìn)行訪問和操作,比如火車票售票網(wǎng)站和淘寶,它們并發(fā)的訪問量在峰值時(shí)達(dá)到上百萬,所以需要在采集端部署大量數(shù)據(jù)庫才能支撐。并且如何在這些數(shù)據(jù)庫之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。
            大數(shù)據(jù)處理之二:導(dǎo)入/預(yù)處理
                雖然采集端本身會(huì)有很多數(shù)據(jù)庫,但是如果要對(duì)這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫,或者分布式存儲(chǔ)集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡單的清洗和預(yù)處理工作。也有一些用戶會(huì)在導(dǎo)入時(shí)使用來自Twitter的Storm來對(duì)數(shù)據(jù)進(jìn)行流式計(jì)算,來滿足部分業(yè)務(wù)的實(shí)時(shí)計(jì)算需求。
                   導(dǎo)入與預(yù)處理過程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會(huì)達(dá)到百兆,甚至千兆級(jí)別。
            大數(shù)據(jù)處理之三:統(tǒng)計(jì)/分析
                統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫,或者分布式計(jì)算集群來對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

                   統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。
            大數(shù)據(jù)處理之四:挖掘
                統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫,或者分布式計(jì)算集群來對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

                   統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。
          許 可 證:《互聯(lián)網(wǎng)信息增值電信業(yè)務(wù)經(jīng)營許可證》編號(hào)(蒙ISP:20080001)《移動(dòng)網(wǎng)信息增值電信業(yè)務(wù)經(jīng)營許可證》編號(hào)(蒙B2-420090006) 蒙ICP備:06003799號(hào)     蒙公網(wǎng)安備 15040402220079號(hào)
          聯(lián)系電話:0476-8222762 0476-8222761 18004762534 18004761534 18004762634 18004761634 傳真:0476-8222761
          電子信箱:cfhlwl@163.com 客服QQ:565109814(技術(shù)部) 2982804625(備案咨詢) 2030466526(市場(chǎng)部)
          六月丁香伊人,99久久免费精品视频,成免费网站,亚洲国产精品综合欧美